
On the path-dependent polarisation tensor

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 437

(http://iopscience.iop.org/0305-4470/18/3/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 18 (1985) 437-443. Printed in Great Britain 

On the path-dependent polarisation tensor 
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Abstract. A generalised definition of the path-dependent polarisation tensor is given. The 
definition is applicable for various descriptions of charged particles constituting a neutral 
atom. 

1. Introduction 

When neutral atoms and molecules are considerd it is often very convenient to introduce 
a polarisation tensor map in place of the current density four-vector j " .  Although the 
notion of the polarisation tensor has previously been used only in macroscopic electro- 
dynamics, it can also be very useful in the electrodynamics of atoms and molecules. 
In this theory atoms and molecules are usually described as non-relativistic objects, 
and since the Coulomb field is an excellent approximation to the interaction of slowly 
moving charges, the Coulomb gauge formalism is employed for the description of the 
field. However, the multipolar interaction Hamiltonian has always been an interesting 
alternative, mainly due to its manifestly gauge-independent form (Power and Zienau 
1957, 1959). 

In the multipolar formalism the interaction term of the Lagrangian is given by 

1 mapfap d3x ( 1 )  

where f a p  is the tensor of the electromagnetic field. The problem of representing 
microscopic charge and current densities for point particles in terms of polarisation 
tensors has been solved by de Groot and his co-workers (de Groot and Stuttorp 1972, 
de Groot 1969) in their study of the modern version of the Lorentz programme, i.e. 
the derivation of the macroscopic laws of electromagnetism from microscopic electro- 
dynamics. Their tensor m a p  has been given in the form of a multipole expansion. 
However, it has been shown (Power and Thirunamachandran 1971, Babiker et al 1973, 
1974, Babiker 1975, Woolley 1971, 1975a, b, Healy 1977) that one can obtain exact 
expressions for the magnetisation and polarisation vectors m and p .  These have the 
so-called path-dependent form. 

This path-dependent representation for the polarisation and magnetisation vectors 
can be written in a manifestly co-variant form (Fiutak and Zukowski 1978, Healy 
1978). For the simplest case of the hydrogen atom, the polarisation tensor is given by 

maB (x) = e x - 6 )  duuB (2) 
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where e is the charge of the electron, and C is an arbitrary surface spanned between 
the trajectories of the nucleus and the electron. 

However, formula (2) can be used only for electrodynamics of point particles. We 
shall present here a generalisation of the path-dependent tensor, which can be applied 
to a very wide class of descriptions of charges, ranging from point particles to second 
quantised charged fields. The formulae will be given for a single neutral atom. 

2. The polarisation tensor 

The polarisation tensor is defined as an antisymmetric solution of the equation 

apmap = j " ,  (3) 

where the current obeys the continuity equation 

amja  = 0. 

We shall assume here that the total charge carried by j p  is zero, i.e. 

lV d a p j ,  = 0 = Q, 

(4) 

where U is an arbitrary space-like hypersurface. No other assumptions on the properties 
of j p  will be made here. The particular form j" is completely arbitrary. 

Let us consider the kernel F defined by 

The path of integration in ( 6 ) ,  [(x), is space-like. It begins at the point R(x) ,  and 
ends at x. R ( x )  plays the role of a privileged 'central' point. We assume that there 
exists a privileged reference frame in which R(x)  fulfils the following conditions: 

aRp(x) /axo= n p ,  aR+(x)/ax '  = 0 ( i  = 1,2,3) ,  Ro = x0, (7)  

where n p  is a unit time-like vector which defines the reference frame. In this frame 
of reference ((x) is a path with a constant time coordinate, i.e. ['(x) = xo. However, 
as we shall see below, this condition may be relaxed for a certain class of solutions. 

We shall prove that 

muP(z)  = 1; F,"p(zlx)jp(x) d4x (8) 

is a solution of the equation (3), for all z belonging to a region of the spacetime 
between two space-like hypersurfaces aI and a,. These hypersurfaces are hyperplanes 
with their normal four-vectors parallel to np. We assume uZ to be later than al. In 
order to get a solution of (3) for the whole spacetime one should consider ai and az 
to be situated at the temporal minus and plus infinity, respectively. Such a procedure 
can be denoted as ci + a(-co) and u2 + (+(+CO). 

The antisymmetry of (8) stems from the very definition of F. 
It is convenient to parametrise the path joining R(x)  with x :  

Fzp(zlx) = loi d l  d,$"(x, I)/d16'4'(z-[(x, I)) dtP'(x, I)/ax" 
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where t (x ,  1) = x and ((x, 0) = R(x) .  We now note that 

aP j u 2  F~’(zIx) j”(x)  d4x 
VI 

One can integrate both expressions by parts; the first one over I ,  and the second one 
over x. It is convenient to transform the result to the privileged reference frame. This 
leads to 

5; d 4 ~ [ S ~ 4 ’ ( z - ~ ) S ~ j P ( ~ ) - S ‘ 4 ’ ( z - ( R ( ~ ) ) S ~ j o ( ~ ) ]  

duo  jo (  x ) S ‘ ~ ’ (  z - R ) S f  
4 X 0 )  

= j P ( z ) -  S ~ S ‘ 3 ’ ( z - R ) Q = j p ( z ) .  (11) 

From ( 1  1 )  one can see that (8) is a solution of (3). The surface term, which results 
when one integrates the second term of (10) by parts, vanishes, since z belongs to the 
interior of the region fl, and the integration paths are inside the hypersurfaces U ,  = u(xy) 
and c2 = a(x:). 

A general solution of (3) inside SZ is the sum of (8) and the general solution of the 
homogeneous equation 

5 = j P ( z ) -  dxo S ( Z O - X O )  J X I  :: 

aP@’P = o (12) 
with the condition that $“’ = -+’”. Indeed, each muP of such a form obviously satisfies 
(3), and conversely, each solution of ( 3 )  may be written in this form. To prove that 
statement, let us multiply equation (3) by F and integrate with respect to x over the 
region fl: 

F$“(zix)dampa(x) d4x = F$”(zlx)j’(x) d4x. 6’ 
The integral on the LHS may be re-expressed by means of partial integration: 

(1 - fu,) da, F$”(zlx)mP“(x) - d4x a/axaF$”(z~x)mPu(x) .  

The explicit form of F, the definition of the path [(x), and the definition of the 
hyperplanes c, and c2 lead us to the conclusion that the surface term of (14) vanishes 
for every point z inside the region SZ.  If R is the whole spacetime, one can relax the 
assumptions on the shape of the path ((x). In this case these can be arbitrary space-like 
lines. This is enough to guarantee that in the limit of u, + c(-m) and u2+ u(+m)  the 
surface integrals vanish for an arbitrary finite point z. 

The second term of (14) can be written as follows. Using the explicit form of the 
kernel F, and the antisymmetry of me’ we find that it is equal to 
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The kernel of the integral can be rearranged in the following way 

a/ax[" lo' d[[,/dI8(4)(z - 5) a5,,/axp1 

= lo' dl  a/a~["(d5[,/dl)S'~'(z - 5) d&l/dxP1 

dl(d5,,/dl)(agy/ax[") a / a ~ ~ 6 ( ~ ) (  z - 5)(agyl/axP1). 
- 5: 

Combining the symmetry properties of this expression, and the relation 

(atr,(x, l)/ax[")(a&](x, l)/axP')l,=o = aR[,/ax[" aR,]/aXPI, 

after partial integration the first term on the RHS of (16) reads 

+ fg,[agplv8(4)(Z - X I  -igu[agp],S(4)(z -x)  

- i jo' d l  at [ , /ax[u  dSY/dl a / a z ~ ~ ) ( z  - 5) a 5 y l / a ~ p 1  

Finally, the equation (13) implies that map has the general form 

where 

AE;"(zIx) = lo' d&,((x, / ) /dl  d5Y/ax[u'6'4'(z - 5) d5"/axP1. 

Using the properties of the pseudotensor E " " " ~  one can express (19) as 

m,"( z) = F$"(zlx)jP(x) d4x + a / a ~ ~ [ ~ ~ ~ ~ ~ ~ ~ ( z ) J  r 
where 

This leads to the conclusion that the general solution of (3) is the sum of the special 
solution of (8) and the general solution of the homogeneous equation (12). 

We may ask now about the explicit form of the polarisation and magnetisation 
fields defined by (8). In the privileged reference frame these read 

d l  d['(x, l)/dlS'3'[z-t(x, l)Jjo(x, zo), ('23 1 

= I d3x lo' dl  ElJk  dSJ/dl d[k/dxP S'3'[z - t(x,  l))P(x7 zo). 
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If the lines in (8) do not evolve with time, or in other words if a(k/axO=O in the 
privileged reference frame, than we have 

m ' ( z )  = 5 d3x lo1 dl eiJk d('/dl agk/ax" S'3 ' [~  - ((x, l)]j"(x, zo). (25) 

The equations (23) and (25) are generalisations of the formulae by Babiker (1975). 

3. Action integral 

Here we study the interaction term of the action integral of electrodynamics. It will 
be shown that the action integral, in which electromagnetic potentials a, are linked 
to the current four-vector in a local interaction term of the form 

jwa+ d4x Jb"' 
can be rewritten in a non-local, path-dependent, but gauge-invariant form with the 
interaction Lagrangian given by (1) .  For the case of point particles this has been 
shown in the papers of Fiutak and Zukowski (1978) and Healy (1980). The non- 
relativistic case has been studied in many works, e.g. Woolley (1975a, b), Healy (1979). 
Here, the case of spinor electrodynamics will be given as an illustration of this general 
property. 

The action integral for the theory is given by 

w = - I '  d4x( 6ypap$ + m&$ + ie&y+a,$ + a  f," f""). (27) 

One can introduce a new spinor field Cc$(x), defined by 

The paths in (28) are defined in such a way, that when x belongs to uI or UZ, the 
whole path lies entirely in the respective hypersurface. With the use of the identity 

one can obtain 

W =  -jc d4x( & p y p a , $ p + m & p $ p + i e & p ( x ) y ~  

x f U a  ( 6) $p (XI + i e&, (XI Y *ac ( x a R " (x  I/ ax p ~ p  ( x + if, J+'" ) . (30) 

The identity (29) can be easily proven if one first parametrises the path (", then 
performs the differentiation, and finally integrates by parts one of the resulting 
expressions. 
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Since the tensor fQp is an antisymmetric one, one can rewrite the third term of 
(29) in the form of the expression ( I )  with mQP given by 

The last term of (30) vanishes. In the reference frame where dRm/dxw has the properties 
(7), it is equal to 

= J T d x ’  ao(R, x’) d3x[-ie&(x, xo)yo+(x, x’)]. 
X I  J 

Since the point R is fixed, a”(R, xo) depends only upon the *xo coordinate. The total 
charge carried by the spinor field is zero (5). Thus (32) vanishes. 

The new action integral, 

yields equivalent equations of motion for the system. As (I$ is defined by (28), the 
assumption that S$(x) and Sa,(x) are vanishing at U, and u2 is sufficient for to 
vanish there. 

The task of rewriting W in the form (33) can also be accomplished by a gauge 
transformation 

aL(x) = a,(x) -a/ax’ 5’ d5“aa(5) ,  (34) 
R ( x )  

or by adding to W an additional term, which describes the interaction with a compensat- 
ing current (Bialynicki-Birula and Bialynicka-Birula 1974, Fiutak and Zukowski 1978, 
Woolley 1980). 
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